Section 2.3 Characterizations of Invertible Matrices

This section provides a review of most of the concepts introduced in Chapter 1, in relation to systems of n linear equations in n unknowns and to square matrices. The main result is Theorem 8.

THEOREM 8. The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.

a. A is an invertible matrix.

- b. A is row equivalent to the n imes n identity matrix.
- c. A has n pivot positions.
- d. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- e. The columns of A form a linearly independent set.
- f. The linear transformation $\mathbf{x}\mapsto A\mathbf{x}$ is one-to-one.
- g. The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- h. The columns of A span \mathbb{R}^n .
- i. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- j. There is an $n \times n$ matrix C such that CA = I.
- k. There is an $n \times n$ matrix D such that AD = I.
- l. A^T is an invertible matrix.

Exercise Determine which of the matrices are invertible. Use as few calculations as possible. Justify your answers.

Solution.

1. The matrix $\begin{bmatrix} -7 & 0 & 4 \\ 3 & 0 & -1 \\ 2 & 0 & 9 \end{bmatrix}$ obviously has linearly dependent columns (because one column is zero), and

so the matrix is not invertible (or singular) by (e) in the Invertible Matrix Theorem.

	[1	-5	-4		Γ1	-5	-4]		Γ1	-5	-4]
2.	0	3	4	\sim	0	3	4	\sim	0	3	4
	$\lfloor -3 \rfloor$	6	0		0	-9	-12		0	0	0

The matrix is not invertible because it is not row equivalent to the identity matrix.

3. The 4×4 matrix $\begin{bmatrix} 1 & 3 & 7 & 4 \\ 0 & 5 & 9 & 6 \\ 0 & 0 & 2 & 8 \\ 0 & 0 & 0 & 10 \end{bmatrix}$ is invertible because it has four pivot positions, by (c) of the IMT

(Invertible Matrix Theorem).