Section 2.3 Characterizations of Invertible Matrices

This section provides a review of most of the concepts introduced in Chapter 1, in relation to systems of n linear equations in n unknowns and to square matrices. The main result is Theorem 8.

THEOREM 8. The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.
a. A is an invertible matrix.
b. A is row equivalent to the $n \times n$ identity matrix.
c. A has n pivot positions.
d. The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
e. The columns of A form a linearly independent set.
f. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.
g. The equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^{n}.
h. The columns of A span \mathbb{R}^{n}.
i. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{n}.
j. There is an $n \times n$ matrix C such that $C A=I$.
k. There is an $n \times n$ matrix D such that $A D=I$.
I. A^{T} is an invertible matrix.

Exercise Determine which of the matrices are invertible. Use as few calculations as possible. Justify your answers.

1. $\left[\begin{array}{rrr}-7 & 0 & 4 \\ 3 & 0 & -1 \\ 2 & 0 & 9\end{array}\right]$
2. $\left[\begin{array}{rrr}1 & -5 & -4 \\ 0 & 3 & 4 \\ -3 & 6 & 0\end{array}\right]$
3. $\left.\begin{array}{llrr}1 & 3 & 7 & 4 \\ 0 & 5 & 9 & 6 \\ 0 & 0 & 2 & 8 \\ 0 & 0 & 0 & 10\end{array}\right]$

Solution.

1. The matrix $\left[\begin{array}{rrr}-7 & 0 & 4 \\ 3 & 0 & -1 \\ 2 & 0 & 9\end{array}\right]$ obviously has linearly dependent columns (because one column is zero), and so the matrix is not invertible (or singular) by (e) in the Invertible Matrix Theorem.
2.

$$
\left[\begin{array}{rrr}
1 & -5 & -4 \\
0 & 3 & 4 \\
-3 & 6 & 0
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & -5 & -4 \\
0 & 3 & 4 \\
0 & -9 & -12
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & -5 & -4 \\
0 & 3 & 4 \\
0 & 0 & 0
\end{array}\right]
$$

The matrix is not invertible because it is not row equivalent to the identity matrix.
3. The 4×4 matrix $\left[\begin{array}{rrrr}1 & 3 & 7 & 4 \\ 0 & 5 & 9 & 6 \\ 0 & 0 & 2 & 8 \\ 0 & 0 & 0 & 10\end{array}\right]$ is invertible because it has four pivot positions, by (c) of the IMT (Invertible Matrix Theorem).

